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PAPER

MLICA-Based Separation Algorithm for Complex Sinusoidal
Signals with PDF Parameter Optimization

Tetsuhiro OKANO†, Shouhei KIDERA††a), and Tetsuo KIRIMOTO††, Members

SUMMARY Blind source separation (BSS) techniques are required
for various signal decomposing issues. Independent component analysis
(ICA), assuming only a statistical independence among stochastic source
signals, is one of the most useful BSS tools because it does not need a
priori information on each source. However, there are many requirements
for decomposing multiple deterministic signals such as complex sinusoidal
signals with different frequencies. These requirements may include pulse
compression or clutter rejection. It has been theoretically shown that an
ICA algorithm based on maximizing non-Gaussianity successfully decom-
poses such deterministic signals. However, this ICA algorithm does not
maintain a sufficient separation performance when the frequency difference
of the sinusoidal waves becomes less than a nominal frequency resolution.
To solve this problem, this paper proposes a super-resolution algorithm
for complex sinusoidal signals by extending the maximum likelihood ICA,
where the probability density function (PDF) of a complex sinusoidal sig-
nal is exploited as a priori knowledge, in which the PDF of the signal am-
plitude is approximated as a Gaussian distribution with an extremely small
standard deviation. Furthermore, we introduce an optimization process for
this standard deviation to avoid divergence in updating the reconstruction
matrix. Numerical simulations verify that our proposed algorithm remark-
ably enhances the separation performance compared to the conventional
one, and accomplishes a super-resolution separation even in noisy situa-
tions.
key words: radar signal processing, maximum likelihood independent
component analysis (MLICA), complex sinusoidal signals, PDF parame-
ter optimization

1. Introduction

Blind source separation (BSS), exploiting only the statistical
feature of the observed signal, is often used for various sig-
nal decomposing issues. Various complex-valued indepen-
dent component analysis (ICA) algorithms, such as FastICA
[1] and maximum-likelihood ICA (MLICA) [2], have been
developed for such diverse signal processing as noise-robust
speech recognition [3] and electroencephalogram analysis
[4]. A distinct advantage of an ICA is that it assumes only
that each source signal is statistically independent. It does
not need any a priori knowledge of the desired signals, al-
lowing uncertainty in the scale and permutation shifts of
the decomposed signal. However, typical radar signal pro-
cessing issues such as pulse compression [5] and clutter re-
jection in Doppler radar systems [6] require deterministic
source signals such as complex sinusoidal forms to be accu-
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rately decomposed. It has recently been theoretically shown
that an ICA successfully decomposes the multiple determin-
istic signals into complex sinusoidal waves with different
frequencies [7]. However, its separation performance se-
riously degrades when the difference of the complex sinu-
soidal signal frequencies is less than the nominal frequency
resolution determined by the maximum data length. Since
general radar issues such as time of arrival (TOA) estimation
or clutter rejection in Doppler radar often entail the above
situations, a super-resolution separation algorithm has a sig-
nificant demand in this field.

To solve these problems, this paper proposes a new
ICA algorithm extending the maximum-likelihood approach
[2], which exploits the probability density function (PDF) of
each source signal. Most conventional maximum-likelihood
ICAs [8], [9] determine the likelihood function from some
typical PDFs. Then, the separation performance of these al-
gorithms seriously depends on the selected PDF. To educe
the maximum performance of MLICA, the proposed ICA
algorithm uses a priori information of the PDF of the com-
plex sinusoidal signals to determine the likelihood function.
Since the PDF of the amplitude of a complex sinusoidal
signal is expressed as a Dirac delta function assuming in a
uniform phase distribution, it is difficult to numerically cal-
culate the score function PDF because one needs the super
function’s partial derivative. To avoid this difficulty, we ap-
proximate the above PDF as a Gaussian function with an
extremely small standard deviation. Moreover, to avoid the
numerical divergence in updating the reconstruction matrix,
the standard deviation of the Gaussian PDF is optimized by
measuring the likelihood function. Numerical simulations
verify that the separation performance of the proposed al-
gorithm is remarkably superior to that achieved by the con-
ventional ICA algorithm, and can considerably reduce the
lower limit of frequency resolution.

This paper is organized as follows. The observation
model and ICA processing are described in Sect. 2. Sec-
tion 3 introduces the two conventional ICA algorithms, Fas-
tICA and MLICA, to compare algorithms. Section 4 de-
scribes the basic theory and detailed procedure of the pro-
posed MLICA algorithm. In Sect. 5, numerical evaluations
are done for some typical cases and discussed. Finally,
Sect. 6 concludes our study, and suggests some directions
for future work.

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 System model.

2. Observation Model and ICA Processing

Figure 1 shows the system model. We assume array an-
tennas for signal receiving, where L denotes the number
of antennas. Each source signal is defined as si(t) =
Ai exp(j2π fit) (i = 1, ...,N), where t is time, f is frequency,
A is amplitude, and N is the number of sources. Here, we as-
sume that N ≤ L. The ICA model assumes that the observed
signals are a linear mixture of the source signals. Then, ob-
served signals x are given by

x = Bs + n, (1)

where x =
[
x1 (t) , ..., xL (t)

]T , s =
[
s1 (t) , ..., sN (t)

]T , B is
called as mixing matrix, and n = [n1(t), ..., nL(t)]T denotes
the white Gaussian noise.

Principal component analysis (PCA) [10] is applied to
obtain uncorrelated signals as x̂. PCA decomposes the ob-
served signals into the uncorrelated signals using singular-
value (SV) decomposition of x. Basically, noisy compo-
nents are eliminated by the PCA compression because the
SVs of noises are, in general, relatively lower than those of
sources. Then, uncorrelated signals x̂ are expressed as

x̂ = Mx, (2)

where M is an N̂ ×L matrix called the whitening matrix and
N̂ is the estimated number of source signals. Here, the num-
ber of sources can be estimated from the number of SVs,
which have predominant values compared with other SVs.
ICA reconstructs source signals as u using a reconstruction
matrix W:

u =Wx̂. (3)

Complete decomposition of the observed signals show sat-
isfy the equation

W MB = PS, (4)

where P is a permutation matrix, and S is a diagonal matrix
whose diagonal elements are equal to aejφ (0 ≤ φ ≤ 2π),
where a is a constant.

3. Conventional Algorithm

Several ICA algorithms have been already proposed based
on maximizing the non-Gaussianity [1] or the likelihood

criteria [2]. In addition, a FastICA-based algorithm eval-
uating non-Gaussianity has been developed to decompose
deterministic signals [7]. This section briefly explains the
two conventional ICA algorithms, based on FastICA and
MLICA, to compare them to our proposed algorithm.

3.1 FastICA Algorithm

To determine the reconstruction matrix W, the FastICA al-
gorithm uses kurtosis, the fourth standardized moment, of
the separated signals as the criterion to maximize the non-
Gaussianity. In this algorithm, the update rule for W is given
by [1]

Wk+1 = x̂
(
Wk

H x̂
)∗
g
(
|Wk

H x̂ |2
)

−g
(
|Wk

H x̂ |2
)
+ |Wk

H x̂ |2 g′
(
|Wk

H x̂ |2
)
Wk,

Wk+1 =Wk+1/ ‖Wk+1 ‖, (5)

where k expresses the number of iterations, · denotes time
averaging, H denotes Hermitian transpose, g denotes any
suitable non-quadratic contrast function, g′ denotes a deriva-
tive of g, and ∗ is complex conjugate. Since FastICA is
based on maximizing non-Gaussianity to measure the sta-
tistical independence, it is difficult to maintain separation
performance when each source signal has a highly corre-
lated relationship.

3.2 MLICA Algorithm

Another approach is ICA based on maximum likelihood cri-
teria (MLICA) [2], [8], [9], which uses the PDF of source
signals. This algorithm updates W by maximizing the like-
lihood function

L (W) = log ps (Wx̂) + log | det W |, (6)

where ps is the PDF of the source signals. This algorithm
[2] yields the natural gradient updates in optimizing L (W).
The update rule is expressed as

Wk+1 =Wk + μ
(
I − ψ (u) uH

)
Wk, (7)

where I is the unit matrix and μ is an empirically-determined
learning coefficient. ψ(u) is called the score function defined
as ψ(u) ≡ [ψ(u1), ψ(u2), ..., ψ(uN)]T , with each component
ψ(ul) determined by

ψ (ul) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎝
∂ log ps

(
uR

l , u
I
l

)
∂uR

l

+ j
∂ log ps

(
uR

l , u
I
l

)
∂uI

l

⎞⎟⎟⎟⎟⎟⎟⎠ , (8)

where uR
l , uI

l are the real and imaginary part of ul. In the
conventional MLICA, the form of the PDF must typically
be selected from the sub-Gaussian or super-Gaussian na-
ture of the estimated source signals [8]. Since the MLICA
algorithm requires a priori knowledge of the PDF of the
source signals, the separation performance is severely de-
graded when the selected PDF is far from the actual one.
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4. Proposed Algorithm

To solve this problem, we incorporate the PDF of the com-
plex sinusoidal signal into the present MLICA as a priori
information. For common radar or communication, it is, in
general, acceptable to assume that the source signal has a
complex sinusoidal form [5], [6]. For example, estimating
the TOA in radar systems is equivalent to estimating the fre-
quency of the mixed complex sinusoidal signals in the fre-
quency domain. Noting that the phase angle of a complex
sinusoidal signal ul is uniformly distributed between 0 and
2π, the PDF of a complex sinusoidal signal having ampli-
tude 1 is given by

ps(ul) = pr(|ul|)pθ(∠ul) =
1

2π
δ(|ul| − 1), (9)

where pr is the PDF of |ul|, pθ is the PDF of phase angle ∠ul,
and δ denotes Dirac’s delta function. To derive the score
function from the above PDF in a differentiable form, this
method approximates Eq. (9) with the Gaussian function by:

ps(ul) =
1

(2π)
3
2σ

exp

(
− (|ul| − 1)2

2σ2

)
, (10)

where σ satisfiesσ � 1 to be close to Eq. (9). From Eqs. (8)
and (10), the score function ψ(ul) is formulated as

ψ(ul) =
|ul| − 1

2σ2
exp(j∠ul). (11)

Although Eq. (10) becomes close to Eq. (9) when σ → 0,
the score function should diverge to infinity, which makes
it difficult for the reconstruction matrix W to converge in
Eq. (7). Then, we consider that there is an optimal value
of σ in Eq. (11) when we maximize the separation perfor-
mance. To attain the optimal σ, we focus on the fact that the
maximum value of the likelihood function is positively cor-
related to the separation performance. Then, the evaluation
valueL(W(σ)) determined byσ is derived from Eqs. (6) and
(10) as,

L(W(σ)) = T log | det W(σ)|

− 1
2σ2

T∑
k=1

N̂∑
l=1

(|ul(k;σ)| − 1)2 , (12)

where T is the number of the total data length, and u(k;σ)
and W(σ) denote the estimated signal at the k th time index
and the reconstruction matrix, respectively, which are deter-
mined by the proposed MLICA using the score function in
Eq. (11). Then, the proposed algorithm optimizes σ as

σopt = arg max
0<σ<1

L(W(σ)). (13)

Finally, the reconstruction matrix is calculated as Wopt =

W(σopt). The proposed ICA algorithm is described as fol-
lows

Step 1) Uncorrelated observed signals x̂ are obtained by

Fig. 2 Flowchart of the proposed ICA algorithm.

the PCA in Eq. (2).

Step 2) For given σ, MLICA is applied with the score
function in Eq. (11) to obtain W(σ).

Step 3) L(W(σ)) is evaluated, and if L(W(σ)) is maxi-
mized, the procedure is over. Otherwise, σ is updated
and Step 2) is repeated.

Figure 2 presents the flowchart of the proposed ICA algo-
rithm. The threshold ε is empirically determined in this pro-
cess.

5. Performance Evaluation in Numerical Simulation

This section investigates the separation performance of the
conventional and proposed algorithms in numerical simula-
tions. To evaluate the separation performance quantitatively,
we introduce the separation performance (SEP) index

SEP =
1

N̂

N̂∑
i=1

max j

(
|P̂i j|2

)
∑N̂

j=1 |P̂i j |2 −max j

(
|P̂i j |2

) , (14)

where P̂ = W MB is a N̂ × N̂ complex matrix, and P̂i j de-
notes the element of P̂ at the i th row and the j th column.
SEP becomes infinity when the ICA completely decom-
poses the observed signals into the source signal. SEP also
means the ratio of the desired-signal power to the undesired-
signal power for each channel. Here, the trust-region algo-
rithm [11] is used to solve the optimizing problem in our
proposed algorithm. This algorithm guarantees global con-
vergence and local super convergence, which is based on the
idea of calculating the trial step size by checking if the next
value belong to the trust region.
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Fig. 3 Separation performance with each algorithm versus normalized
frequency difference in noiseless environment, where 100 different mixing
cases are averaged.

5.1 Separation Performance for N = 2

First, we assume a noiseless environment. Two complex
sinusoidal signals s = [s1(t), s2(t)] with different frequen-
cies are created, and observed signal x is generated using
a proper mixing matrix B in Eq. (1). Here, the conven-
tional MLICA uses the score function with the following
sub-Gaussian function

ψ(ul) =
1
2

(
tanh(ul

R) − ul
R + j

(
tanh(ul

I) − ul
I
))
. (15)

The reason for this selection is that the PDF of the com-
plex sinusoidal signal is comparatively close to the sub-
Gaussian distribution as in Eq. (15). Figure 3 shows the
SEP for the frequency difference between the two sinusoidal
signals, which is normalized by the inverse of data length
T = 256 and number of antenna L = 2, where the two-dot
chain line is FastICA, the chain line is MLICA with Eq. (15),
the broken line is MLICA with Eq. (11) (σ = 0.2 is fixed),
and the solid line is the proposed algorithm. μ = 0.001,
ε = 10−6, and each amplitude of signals is set to 1. For
the statistical evaluation, we investigate 100 different mix-

ing matrices B, where B =
[

ejθα ejθβ

ejθγ ejθδ

]
and each param-

eter of (θα, θβ, θγ, θδ) is independently changed according to
the uniform distribution in [0, 2π]. The SEP for each fre-
quency difference is averaged with 100 cases. Figure 3
shows that our algorithm achieves a remarkably higher sepa-
ration performance compared to the conventional ICA algo-
rithm in all frequency differences, because a priori knowl-
edge of the PDF offers a more accurate solution for ICA op-
timization. Note that this algorithm attains a sufficient SEP
when Δ f , the normalized frequency difference of source sig-
nals, is smaller than the nominal frequency resolution with
fs = 1/T . This verifies the super-resolution property of
our algorithm. Furthermore, Fig. 4 shows the optimized σ
in the proposed method versus normalized frequency differ-
ence. The figure shows that the optimized σ significantly
depends on the frequency difference, particularly in the case

Fig. 4 Optimizedσ in the proposed method versus normalized frequency
difference.

of Δ f < fs.
Here, we investigate the frequency resolution for each

algorithm. In this case, the frequency resolution is defined
as the minimum frequency difference, which holds SEP
≥ 20 dB. As shown in Fig. 3, each frequency resolution with
FastICA is 0.84 fs, MLICA with Eq. (15) is 0.82 fs, MLICA
with Eq. (11) (σ = 0.2 is fixed) is 0.66 fs, and the pro-
posed algorithm is 0.36 fs. This comparison shows that our
algorithm obtains the highest frequency resolution among
all the algorithms, and accomplishes super-resolution signal
decomposition. In addition, Fig. 5 shows the real part of the
observed signal and separated signal waveforms for each al-
gorithm when the difference in the frequency difference is
Δ f = 0.5 fs, where the time is normalized by the data length
N = 256. The SEP with FastICA is 8.9 dB, MLICA with
Eq. (15) is 9.6 dB, MLICA with Eq. (11) (σ = 0.2 is fixed)
is 14.3 dB, and our algorithm is 28.0 dB. As shown in this
figure, the reconstructed signals waveform with FastICA,
MLICA with Eq. (15) and MLICA with Eq. (11) (σ = 0.2
is fixed) are imperfectly separated. However, our algorithm
using the optimized σ successfully separates the two origi-
nal signals.

Moreover, white Gaussian noise is added to the ob-
served signals. Here, the signal-to-noise ratio (SNR) is de-
fined as the ratio of the signal power to the average noise
power in the time domain. Figure 6 shows the SEP against
the SNR for each algorithm when the difference in the nor-
malized frequency is Δ f = 0.7 fs and each amplitude of
source signal is set to 1. Here, we investigate 500 patterns of
white Gaussian noises, where the mixing matrix B is fixed.
This figure shows that the proposed algorithm obtains more
separation performance for all SNR values and significantly
exceeds all conventional algorithms in terms of SEP evalua-
tion.

5.2 Separation Performance for N ≥ 2

To show the relevance of our algorithm, this section inves-
tigates the situation for N ≥ 2. Figures 7 and 8 show the
SEP against the number of source signals for a noiseless
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Fig. 5 Real part of waveform. (a) Source signal waveforms (b) Observed
signal waveforms and separated signals with (c) FastICA (d) MLICA with
Eq. (15) (e) MLICA with Eq. (11) (σ = 0.2) (f) Proposed algorithm, where
Δ f = 0.5 fs.

and noisy situation at SNR = 20 dB, respectively. Here, the
number of antenna is L = 6, and the adjacent frequency
difference between source signals is set to Δ f = 0.7 fs and
each amplitude of source signal is 1. Here, the 500 pat-
terns of white Gaussian noises are tested in Fig. 8, where
the mixing matrix B is fixed at the each number of signals.
The number of source signals is determined by extracting
the distinct singular value in PCA processing. These fig-
ures confirm that our algorithm achieves the highest separa-
tion performance for any number of signals compared to the
other algorithms. However, this figure shows that separation

Fig. 6 Separation performance against the SNR for each algorithm,
where mixing matrix is fixed.

Fig. 7 Separation performance with each algorithm versus number of
source signal in noiseless environment, where 100 different mixing cases
are averaged.

Fig. 8 Separation performance with each algorithm versus number of
source signal in SNR=20 dB, where mixing matrix is fixed.

performance of all ICA algorithms becomes lower when the
number of source signals is increased. As a discussion for
this result, Table 1 shows multiple correlation coefficients
between the source signals at each number of source signals.
This table shows that the multiple correlation coefficient in-
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Table 1 Multiple correlation coefficients between source signals at each
number of signals.

Number of source signals s1 s2 s3 s4 s5

2 0.37 0.37 - - -
3 0.53 0.59 0.53 - -
4 0.64 0.74 0.74 0.64 -
5 0.72 0.84 0.86 0.84 0.72

Fig. 9 Optimizedσ in the proposed method versus normalized frequency
difference for each number of signals in noiseless environment.

creases when the number of source signals increase. The
SEPs for all the algorithms are seriously degraded in these
highly correlated situations.

Finally, Fig. 9 shows the optimized σ in the pro-
posed method versus adjacent frequency difference between
source signals when changing the number of signals N in
the noiseless case. Here, the number of antenna is fixed as
L = 6, and 100 different mixing matrices B are investigated.
This figure shows that the optimized σ significantly depends
on the frequency difference and number of source signals.
Note that there are some fluctuations in the case of N = 3, 4
and 5, because each multiple correlation coefficient is dif-
ferent and the optimized sigma is not uniquely determined.

6. Conclusion

In this paper, we proposed a new ICA algorithm in specify-
ing the separation of complex sinusoidal signals with differ-
ent frequencies. The FastICA algorithm, using only the sta-
tistical independence among source signals, results in sep-
aration performance degradation, particularly when the fre-
quency difference is below a nominal frequency resolution.
In addition, the conventional MLICA algorithm needs to se-
lect the PDF from the typical candidates, and its separation
performance is severely lowered when the PDF is wrongly
estimated. To solve this problem with an existing ICA algo-
rithm, we newly introduced an MLICA algorithm in which
the score function is modified to suit the complex sinusoidal
signal, where the PDF of the amplitude of the complex si-
nusoidal signal is approximated as a Gaussian function with
a small standard deviation. Moreover, to attain maximum
separation performance, this method optimizes the standard
deviation of the PDF to suppress the numerical divergence

in calculating the MLICA reconstruction matrix. Numerical
simulations verified that the separation performance of the
proposed algorithm is remarkably enhanced when the fre-
quency difference of source signals is lower than the nom-
inal frequency resolution. Furthermore, we confirmed the
significant advantage of our algorithm even for a noisy case
and a higher number of source signals. One result shows
that the proposed algorithm has a super-resolution property
for decomposing separation for a complex sinusoidal sig-
nal, and is most suitable for actual radar applications such
as TOA estimation and clutter rejection.
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Appendix: Derivation of Eq. (11)

Equation (10) can be written as
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ps(u
R
l , u

I
l)=

1

(2π)
3
2σ

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−
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uR
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+uI

l
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2σ2
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. (A· 1)

Then, with Eqs. (8) and (A· 1), the score function ψ(ul) is
formulated as

ψ(ul) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎝
∂ log ps

(
uR

l , u
I
l
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∂uR

l
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l
2
+ uI

l
2 − 1

) (
uR

l + juI
l

)

2σ2
√

uR
l

2
+ uI

l
2

=
|ul| − 1

2σ2
exp(j∠ul). (A· 2)
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